
Programming Manual

Meca500 (R3)
Robot Firmware: 7.0.6

Document Revision: A

May 11, 2018

The information contained herein is the property of Mecademic Inc. and shall not be
reproduced in whole or in part without prior written approval of Mecademic Inc. The
information herein is subject to change without notice and should not be construed as a
commitment by Mecademic Inc. This manual will be periodically reviewed and revised.

Mecademic Inc. assumes no responsibility for any errors or omissions in this document.

Copyright c© 2018 by Mecademic Inc.

Contents

1 About this manual 1

2 Basic theory and definitions 1
2.1 Definitions and conventions . 1

2.1.1 Joint numbering . 1
2.1.2 Reference frames . 2
2.1.3 Joint angles . 3
2.1.4 Pose and Euler angles . 3
2.1.5 Joint set and robot position . 4
2.1.6 Units . 5

2.2 Key concepts . 5
2.2.1 Homing . 5
2.2.2 Blending . 6
2.2.3 Inverse kinematic configuration . 6
2.2.4 Workspace and singularities . 9

3 Communicating over TCP/IP 11
3.1 Motion commands . 11

3.1.1 Delay(t) . 12
3.1.2 GripperOpen/GripperClose . 12
3.1.3 MoveJoints(θ1, θ2, θ3, θ4, θ5, θ6) . 13
3.1.4 MoveLin(x, y, z, α, β, γ) . 13
3.1.5 MoveLinRelTRF(x, y, z, α, β, γ) . 14
3.1.6 MoveLinRelWRF(x, y, z, α, β, γ) . 14
3.1.7 MovePose(x, y, z, α, β, γ) . 15
3.1.8 SetAutoConf(e) . 15
3.1.9 SetBlending(p) . 16
3.1.10 SetCartAcc(p) . 16
3.1.11 SetCartAngVel(ω) . 16
3.1.12 SetCartLinVel(v) . 17
3.1.13 SetConf(c1, c3, c5) . 17
3.1.14 SetGripperForce(p) . 17
3.1.15 SetGripperVel(p) . 18
3.1.16 SetJointAcc(p) . 18
3.1.17 SetJointVel(p) . 18
3.1.18 SetTRF(x, y, z, α, β, γ) . 18

i

3.1.19 SetWRF(x, y, z, α, β, γ) . 19
3.2 Request commands . 19

3.2.1 ActivateRobot . 19
3.2.2 ActivateSim . 20
3.2.3 ClearMotion . 20
3.2.4 DeactivateRobot . 20
3.2.5 DeactivateSim . 21
3.2.6 BrakesOn/BrakesOff . 21
3.2.7 GetConf . 21
3.2.8 GetJoints . 21
3.2.9 GetPose . 22
3.2.10 GetStatusGripper . 22
3.2.11 GetStatusRobot . 22
3.2.12 Home . 23
3.2.13 PauseMotion . 23
3.2.14 ResetError . 24
3.2.15 ResumeMotion . 24
3.2.16 SetEOB(e) . 24
3.2.17 SetEOM(e) . 25
3.2.18 SetOfflineProgramLoop(e) . 25
3.2.19 StartProgram(n) . 26
3.2.20 StartSaving(n) . 26
3.2.21 StopSaving . 27
3.2.22 SwitchToEtherCAT . 27

3.3 Responses . 27
3.3.1 Command error messages . 28
3.3.2 Command responses and pose and joint set feedback 29
3.3.3 Status messages . 32

4 Communicating over EtherCAT 33
4.1 Overview . 33

4.1.1 Connection types . 33
4.1.2 ESI file . 33
4.1.3 Enabling EtherCAT . 33
4.1.4 LEDs . 33
4.1.5 Activating and homing the robot . 34

4.2 Object dictionary . 34
4.2.1 Switch mode . 34

ii

4.2.2 Robot control . 35
4.2.3 Motion control . 36
4.2.4 Movement . 36
4.2.5 WRF . 37
4.2.6 TRF . 37
4.2.7 Motion settings . 38
4.2.8 MEGP 25 (gripper) . 38
4.2.9 Robot status . 39
4.2.10 Motion status . 39
4.2.11 Angular position (joint set) . 40
4.2.12 Cartesian position (end-effector pose) 40
4.2.13 Errors . 41

4.3 PDO mapping . 41

iii

This page is intentionally left blank

Programming Manual

1 About this manual

This programming manual describes the key theoretical concepts related to industrial robots
and the two methods that can be used for communicating with our robots from an Ethernet-
enabled computing device (IPC, PLC, PC, Mac, Raspberry Pi, etc.): using either the
TCP/IP or the EtherCAT protocol. Indeed, we do not offer yet-another proprietary robot
programming language, but a set of robot-related instructions. You can therefore use any
modern programming language that can run on your computing device.

The default communication method used by our robots is over TCP/IP and consists of
a set of motion and requests commands to be sent to one of our robots, as well as a set of
messages sent back by the robot. Therefore, in the following section, we will refer to some
of these motion commands in explaining the key theoretical concepts related to industrial
robots. Furthermore, the communication method based on the EtherCAT protocol and
described in Section 4, is essentially a translation of our TCP/IP method. Thus, in Section 4,
we do not describe again each concept but simply refer to Section 3.

In other words, even if you intend to use the EtherCAT protocol only, you must read
every single page of this manual. However, before reading this programming manual, you
must first read the User Guide.

2 Basic theory and definitions

At Mecademic, we are particularly attentive to and concerned about technical accuracy,
detail, and consistency. Rather than writing “The robot follows a linear path,” we would
write “The robot moves in such a way that its TCP moves along a linear path.” We would
never use terms such as “via point” or “singular position” because the end-effectors of our
robots move with six degrees of freedom, not with three. We try not to use the term “axis”
to refer to “joint.”

2.1 Definitions and conventions

You must read this section very carefully, even if you have prior experience with robot arms.

2.1.1 Joint numbering

The joints of the Meca500 are numbered in ascending order, starting from the base (Fig. 1).

Copyright c© 2018 by Mecademic Inc. Page 1 of 42

https://www.mecademic.com/Documentation/Meca500-R3-User-Manual.pdf

Programming Manual

Figure 1: The joint numbering and the reference frames for the Meca500.

2.1.2 Reference frames

At Mecademic, we use only right-handed Cartesian coordinate systems (reference frames).
The reference frames associated with the Meca500 are shown in Fig. 1. The x axes are in red,
the y axes are in green, and the z axes are in blue. The key terms related to the reference
frames that you need to be very familiar with are:

• BRF: Base Reference Frame. Static reference frame fixed to the robot base. Its z
axis coincides with the axis of joint 1 and points upwards, while its origin lies on the
bottom of the robot base. The x axis of the BRF is perpendicular to the front edge of
the robot base and points forward. The BRF cannot be reconfigured.

• WRF: World Reference Frame. The robot main static reference frame. By default, it
coincides with the BRF. It can be reconfigured with respect to (w.r.t.) the BRF using
the SetWRF command.

• FRF: Flange Reference Frame. Mobile reference frame fixed to the robot flange (me-
chanical interface). Its z axis coincides with the axis of joint 6, and points outwards.
Its origin lies on the surface of the robot flange. Finally, when all joints are at zero,
the x axis of the FRF points downwards.

• TRF: Tool Reference Frame. The robot end-effector’s reference frame. By default,
it coincides with the FRF. It can be reconfigured with respect to the TRF using the
SetTRF command.

• TCP: Tool Center Point. Origin of the TRF. (Not to be confused with the Transmission
Control Protocol acronym, which is also used in this document.)

Page 2 of 42 Copyright c© 2018 by Mecademic Inc.

Programming Manual

2.1.3 Joint angles

The angle associated with joint i (i = 1, 2, ..., 6), θi, will be referred to as joint angle i.
Since joint 6 can rotate more than one revolution, you should think of a joint angle as a
motor angle, rather than as the angle between two consecutive robot links. A joint angle is
measured about the z axis associated with the given joint using the right-hand rule. Note
that the direction of rotation for each joint is indicated on the robot body. All joint angles
are zero in the configuration shown in Fig. 1. Note, however, that unless you attach an
end-effector with cabling to the robot flange, there is no way of telling the value of θ6 just
by observing the robot. For example, in Fig. 1, θ6 might as well be equal to 360◦.

The mechanical limits of the first five robot joints are as follows:

−175◦ ≤ θ1 ≤ 175◦,

−70◦ ≤ θ2 ≤ 90◦,

−135◦ ≤ θ3 ≤ 70◦,

−170◦ ≤ θ4 ≤ 170◦,

−115◦ ≤ θ5 ≤ 115◦.

Joint 6 has no mechanical limits, but its (current) software limits are ±100 revolutions. Note,
however, that the normal working range of joint 6 is −180◦ ≤ θ6 ≤ 180◦, as will be explained
in Section 2.2.3. This closed interval will be denoted as [−180◦, 180◦] and also referred to as
a ±180◦ range.

2.1.4 Pose and Euler angles

Some of Meca500’s commands take a pose (position and orientation of one reference frame
with respect to another) as an input. In these commands, and in Meca500’s web interface, a
pose consists of a Cartesian position, {x, y, z}, and an orientation specified in Euler angles ,
{α, β, γ}, according to the mobile XYZ convention. In this convention, if the orientation of
a frame F1 with respect to a frame F0 is described by the Euler angles {α, β, γ}, it means
that if you align a frame Fm with frame F0, then rotate this frame about its x axis by α
degrees, then about its y axis by β degrees, and finally about its z axis by γ degrees, the
final orientation of frame Fm will be the same as that of frame F1.

An example of specifying orientation using the mobile XYZ Euler angle convention is
shown in Fig. 2. In the third image of this figure, the orientation of the black reference frame
with respect to the gray reference frame is represented with the Euler angles {45◦,−90◦, 90◦}.

It is crucial to understand that there are infinitely many Euler angles that correspond to
a given orientation. For your convenience, the various motion commands that take position

Copyright c© 2018 by Mecademic Inc. Page 3 of 42

http://www.mecademic.com/ressources/Euler-angles/Euler-angles

Programming Manual

(a) rotation of 45◦ about the x axis (b) rotation of −90◦ about the
new y axis

(c) rotation of 90◦ about the new
z axis

Figure 2: Example showing the three consecutive rotations associated with the Euler angles
{45◦,−90◦, 90◦}.

and Euler angles as arguments accept any values for the three Euler angles (e.g., the set
{378◦, −567◦, 745◦}). However, we output only the equivalent Euler angle set {α, β, γ}, for
which −180◦ ≤ α ≤ 180◦, 90◦ ≤ β ≤ 90◦ and −180◦ ≤ γ ≤ 180◦. Furthermore, if you specify
the Euler angles {α,±90◦, γ}, the controller will always return an equivalent Euler angles
set in which α = 0. In other words, it is perfectly normal that the Euler angles that you
have used to specify an orientation are not the same as the Euler angles returned by the
controller, once that orientation has been attained. To understand why, we urge you to read
our tutorial on Euler angles , available on our web site.

2.1.5 Joint set and robot position

As we will explain later, for a desired pose of the robot end-effector with respect to the
robot base, there are several possible solutions for the values of the joint angles, i.e., several
possible sets {θ1, θ2, θ3, θ4, θ5, θ6}. Thus, the best way to describe where the robot is, is by
giving its set of joint angles. We will refer to this set at the joint set.

For example, in Fig. 1, the joint set of the robot is {0◦, 0◦ 0◦, 0◦, 0◦, 0◦}, although, it could
have been {0◦, 0◦ 0◦, 0◦, 0◦, 360◦}, and you wouldn’t be able to tell the difference from the
outside.

A joint set defines completely the relative poses, i.e., the “arrangement,” of the seven
robot links (a six-axis serial robot is typically composed of a series of seven links, starting
from the robot base and ending with the robot end-effector). We will call this arrangement
the robot position. Do not confuse this term with the position of the robot’ TCP. Thus,
the joint sets {θ1, θ2, θ3, θ4, θ5, θ6} and {θ1, θ2, θ3, θ4, θ5, θ6 + n360◦}, where n is an integer,

Page 4 of 42 Copyright c© 2018 by Mecademic Inc.

http://www.mecademic.com/ressources/Euler-angles/Euler-angles

Programming Manual

correspond to the same robot position. Generally (but not always), a robot position can
also be defined by the pose of the TRF with respect to the WRF, the definitions of both
frames, and the configuration type (to be discussed in Section 2.2.3). As we will explain in
Section 2.2.4, in a so-called singular robot position, there may be infinitely many other robot
positions corresponding to the same end-effector pose.

2.1.6 Units

We use the International System of Units (SI). Distances that are displayed to or entered by
the user are in millimeters (mm) and angles in degrees (◦).

2.2 Key concepts

2.2.1 Homing

At power-up, the Meca500 knows the approximate angle of each of its joints, with a couple
of degrees of uncertainty. To find the exact joint angles with very high accuracy, each motor
must make one full revolution. This process is the essential part of a procedure called homing.

Thus, during homing, all joints rotate slightly. First, all joints rotate simultaneously
in one direction. Specifically, each of joints 1, 2 and 3 rotates 3.6◦, joints 4 and 5 rotate
7.2◦ each, and joint 6 rotates 12◦. Then, all joints rotate back to their initial angles. The
whole back and forth motion lasts approximately 4 seconds. Make sure there is nothing that
restricts the above-mentioned joint movements, or else the homing process will fail.

Finally, if your robot is equipped with Mecademic’s gripper (MEGP 25), the robot con-
troller will automatically detect it, and the homing procedure will end with a homing of
the gripper. The gripper will fully open, then fully close. Make sure there is nothing that
restricts the full 6-mm range of motion of the gripper, while the latter is being homed.

It is crucial to understand that although angle θ6 can be controlled in the range±360, 000◦,
the absolute encoder of joint 6 works only in the range ±420◦. Therefore, you must always
bring joint 6 within the range ±419◦ before deactivating or unpowering the robot. Failure to
do so may lead to an offset of n120◦ in joint 6, where n is a non-zero integer. If this happens,
unpower the robot and disconnect your tooling. Then, power up the robot, activate it, home
it, and zero joint 6. If the screw on the robot’s flange is not as in Fig. 8(a) of the User Guide,
then rotate joint 6 to +720◦, and deactivate the robot. Next, reactivate it, home it and zero
joint 6 again. If the screw on the robot’s flange is still not as in that Fig. 8(a), then rotate
joint 6 to +720◦, and deactivate the robot. This will solve the problem.

Copyright c© 2018 by Mecademic Inc. Page 5 of 42

https://www.mecademic.com/products/gripper
https://www.mecademic.com/Documentation/Meca500-R3-User-Manual.pdf

Programming Manual

2.2.2 Blending

All multi-purpose industrial robots function in a similar manner when it comes to moving
around. You either ask the robot to move its end-effector to a certain pose or its joints to a
certain joint set. When your target is a joint set, you have no control over the path that the
robot will follow. When the target is a pose, you can either leave it to the robot to choose
the path or require that the TCP follows a linear trajectory. Thus, if you need to follow a
complex curve (as in a gluing application), you need to decompose your curve into multiple
linear segments. Then, instead of having the robot stop at the end of each segment and
make a sharp change in direction, you can blend these segments using what we call blending.
You can think of blending as the action of taking a shortcut.

Blending is a feature that allows Meca500’s trajectory planner to keep the Cartesian
velocity of the robot end-effector as constant as possible between two joint-domain move-
ments (MoveJoints, MovePose) or two Cartesian movements (MoveLin, MoveLinRelTRF,
MoveLinRelTRF) in a queue. When blending is activated, the trajectory planner will tran-
sition between the two trajectories using a rounded (blended) curve. The higher the speed,
the more rounded the transition will be. In other words, you cannot control directly the
radius of the blending. Also, note that even if blending is enabled, the robot will also come
to a full stop after a joint-mode movements followed by a Cartesian-mode movement, or
vice-versa.

Figure 3 shows an example of blending. When blending is disabled, each path will begin
from a full stop and end to a full stop. Blending is enabled by default. It can be disabled
completely or enabled only partially with the SetBlending command.

Figure 3: TCP path between two consecutive movements (in this case, two MoveLin com-
mands). In blue, the blending is disabled. In gray, it is enabled.

2.2.3 Inverse kinematic configuration

Like virtually all six-axis industrial robot arms available on the market, Meca500’s inverse
kinematics generally provide up to eight feasible robot positions for a desired pose of the
TRF with respect to the WRF (Fig. 4), and many more joint sets (since if θ6 is a solution,
then θ6 ± n360◦, where n is an integer, is also a solution).

Page 6 of 42 Copyright c© 2018 by Mecademic Inc.

Programming Manual

(a) {1, 1, 1} (b) {1, 1,−1} (c) {1,−1, 1} (d) {1,−1,−1}

(e) {−1, 1, 1} (f) {−1, 1,−1} (g) {−1,−1, 1} (h) {−1,−1,−1}

Figure 4: An example showing all eight possible configurations {c1, c3, c5} for the pose
{77 mm, 210 mm, 300 mm, −103◦, 36◦, 175◦} of the FRF with respect to the BRF.

Each of these solutions is associated with one of eight so-called configuration types, or
configurations, defined by three parameters: c1, c3 and c5. Each parameter corresponds to a
specific geometric condition on the robot position:

– c1 :
• c1 = 1, if the wrist center (where the axes of joints 4, 5 and 6 intersect) is on the

positive side of the yz plane of the frame associated with joint 2 (see Fig. 1). This
frame is obtained by shifting the BRF upwards and rotating it about the axis of
joint 1 at θ1 degrees. (The condition c1 = 1 is often referred to as “front”.)

• c1 = −1, if the wrist center is on the negative side of this plane (“back” condition).
– c3:

• c3 = 1, if θ3 > − arctan(60/19) ≈ −72.43◦ (“elbow up” condition)

• c3 = −1, if θ3 < − arctan(60/19) ≈ −72.43◦ (“elbow down” condition)
– c5:

• c5 = 1, if θ5 > 0◦ (“no flip” condition)

• c5 = −1, if θ5 < 0◦ (“flip” condition)

Copyright c© 2018 by Mecademic Inc. Page 7 of 42

Programming Manual

(a) c1 = −1, back (b) shoulder singularity (c) c1 = 1, front

(d) c3 = −1, elbow down (e) elbow singularity (f) c3 = 1, elbow up

(g) c5 = −1, flip (h) wrist singularity (i) c5 = 1, no flip

Figure 5: Examples of the inverse kinematic configuration parameters and of the three types
of singularities.

Figure 5 shows an example of each inverse kinematics configuration parameter, as well as
of the limit conditions, which are called singularities.

Page 8 of 42 Copyright c© 2018 by Mecademic Inc.

Programming Manual

Note that when we solve the inverse kinematics, we only find solutions for θ6 that are
in the range ±180◦. Thus, if you want to record your current robot position (e.g., after
jogging the robot), you can choose between two possible approaches. One approach is to
save directly the current joint set by retrieving it first with GetJoints. In this way, you don’t
have to worry about configurations and you will record the exact value for θ6, which could
be outside the range ±180◦. However, you won’t be able to move the robot to this joint set
by forcing the TCP to follow a straight line (i.e., use the MoveLin command). For example,
if the recorded joint set corresponds to the robot holding a pin inserted in a hole, you won’t
be able to insert the pin following a linear path.

Therefore, if you want to follow a linear path to a desired robot position, you must follow
a different approach. You must record the corresponding pose of the TRF (by retrieving
it with GetPose) with respect to the WRF, but also the corresponding configuration (by
retrieving it with GetConf). Then, when you later want to approach this robot position with
MoveLin from a starting robot position, you need to make sure the robot is already in this
configuration. For example, you can set the desired configuration (using SetConf) and use
MovePose to get to the starting robot position. Then, you can use MoveLin to get to the
target robot position. Of course, you also need to use the same TRF and WRF. The only
problem with this approach is that you can only use it if −180◦ ≤ θ6 ≤ 180◦ in the robot
configuration of interest. Thus, for example, if you want to retrieve a prismatic peg from a
prismatic hole you must absolutely start from a joint position in which −180◦ ≤ θ6 ≤ 180◦.

In many cases, however, you simply want to move the robot end-effector to a given pose,
and do not care about the path followed by the end-effector. In these situations, you can
enable the automatic configuration selection feature (using SetAutoConf) and not worry
about configurations. (In fact, this feature is activated by default.) If you simply want the
TRF to move to a certain pose you can use the command MovePose and the robot will
automatically select the optimal configuration for this pose (the one that corresponds to the
robot position that is faster to reach, but in which −180◦ ≤ θ6 ≤ 180◦).

Note, however, that when using a Cartesian-mode movement, it is impossible to change a
configuration. (The command SetAutoConf has effect only on MovePose). This is because a
change of configuration can only be accomplished by passing through a so-called singularity.
In general, this is physically impossible while having the TCP follow a specific path (as is
the case with the MoveLin, MoveLinRelTRF and MoveLinRelWRF commands).

2.2.4 Workspace and singularities

Many users mistakenly oversimplify the workspace of a six-axis robot arm as a sphere of
radius equal to the reach of the robot (the maximum distance between the axis of joint 1

Copyright c© 2018 by Mecademic Inc. Page 9 of 42

Programming Manual

and the center of the robot’s wrist). The truth is that the Cartesian workspace of a six-
axis industrial robot is a six-dimensional entity: the set of all attainable end-effector poses.
Therefore, the workspace of a robot depends on the chosen TRF. Worse yet, as we saw in
the preceding section, for a given end-effector pose, we can generally have eight different
robot positions (Fig. 4). Thus, the Cartesian workspace of a six-axis robot arm is the
combination of eight workspace subsets, one for each the eight configuration types. These
eight workspace subsets have common parts, but there are also parts that belong to only
one subset (i.e, there are end-effector poses accessible with only one configuration, because
of joint limits). Therefore, in order to make optimal use of all attainable end-effector poses,
the robot must often pass from one subset to the other. These passages involved so-called
singularities, and are problematic when the robot end-effector is to follow a specific Cartesian
path (e.g., a line).

Any six-axis industrial robot arm has singularities. However, the advantage of robot arms
like the Meca500, where the axes of the last three joints intersect at one point (the center
of the robot’s wrist), is that these singularities are very easy to describe geometrically (see
Fig. 5). In other words, it is very easy to know whether a robot position is close to singularity
in the case of the Meca500.

In a singular robot position, some of the joint set solutions corresponding to the pose of the
TRF may coincide, or there may be infinitely many joint sets. The problem with singularities
is that at a singular robot position, the robot end-effector cannot move in certain directions.
This is a physical blockage, not a controller problem. Thus, singularities are one type of
workspace boundary (the other type occurs when a joint is at its limit, or when two links
interfere mechanically).

For example, consider the Meca500 at its zero robot position (Fig. 1). At this robot
position, the end-effector cannot be moved laterally (i.e., along the y axis of the BRF); it is
physically blocked. Thus, singularities are not some kind of purely mathematical problem.
They represent actual physical limits. That said, because of the way a robot controller is
programmed, at a singular position (or at a robot position that is very close to a singular-
ity), the robot cannot be moved in any direction using a Cartesian-mode motion command
(MoveLin, MoveLinRelTRF, MoveLinRelWRF).

There are three types of singular robots positions, and these correspond to the conditions
under which the configuration parameters c1, c3 and c5 are not defined. The most common
singular position is called wrist singularity and occurs when θ5 = 0◦ (Fig. 5h). In this
singularity, joints 4 and 6 can rotate in opposite directions at equal velocities while the end-
effector remains stationary. You will run into this singularity very frequently. The second
type of singularity is called elbow singularity (Fig. 5e). It occurs when the arm is fully
stretched, i.e., when the wrist center is in one plane with the axes of joints 2 and 3. In the

Page 10 of 42 Copyright c© 2018 by Mecademic Inc.

Programming Manual

Meca500, this singularity occurs when θ3 = − arctan(60/19) ≈ −72.43◦. You will run into
this singularity when you try to reach poses that are too far from the robot base. The third
type of singularity is called shoulder singularity (Fig. 5b). It occurs when the center of the
robot’s wrist lies on the axis of joint 1. You will run into this singularity when you work too
close to the axis of joint 1.

As already mentioned, you can never pass through a singularity using a Cartesian-mode
motion command. However, you will have no problem with singularities when using the
command MoveJoints, and to a certain extent, the command MovePose. Finally, you need
to know that when using the commands MoveLin, MoveLinRelTRF and MoveLinRelWRF,
problems occur not only when crossing a singularity, but also when passing too close to a
singularity. When passing close to a wrist or shoulder singularity, some joints will move very
fast (i.e., 4 and 6, in the case of a wrist singularity, and 1, 4 and 6, in the case of a shoulder
singularity), even though the TCP speed is very low. Thus, you must avoid moving in the
vicinity of singularities in Cartesian mode.

3 Communicating over TCP/IP

To operate the Meca500, the robot must be connected to a computer or a PLC over Ethernet.
Commands may be sent through Mecademic’s web interface, or through a custom computer
program using either the TCP/IP protocol, which is detailed in the remainder of this section,
or EtherCAT, which is explained in the next section. In the case of TCP/IP, the Meca500
communicates using null-terminated ASCII strings, which are transmitted over TCP/IP. The
robot default IP address is 192.168.0.100, and its default TCP/IP port is 10000. This port is
referred to as the control port. Additionally, after homing, the robot will continuously send
pose feedback over TCP/IP port 10001.

When using the TCP/IP protocol, the Meca500 can interpret two kinds of commands:
motion commands and request commands. All commands must end with the ASCII NUL
character, commonly denoted as \0. Commands are not case-sensitive. However, no whites-
pace characters are permitted before or after a command; only inside the arguments part.
Empty lines are not permitted either.

3.1 Motion commands

Motion commands are used to construct a trajectory for the robot. When the Meca500
receives a motion command, it places it in a queue. The command will be run once all
preceding commands have been executed. The arguments for all motion commands, except

Copyright c© 2018 by Mecademic Inc. Page 11 of 42

https://en.wikipedia.org/wiki/Null-terminated_string
https://en.wikipedia.org/wiki/Null-terminated_string

Programming Manual

SetAutoConf and SetConf, are IEEE-754 floating-point numbers, separated with commas
and, optionally, spaces.

In the following subsections, the motion commands are presented in alphabetical order.
All motion commands have arguments, but not all have default values (e.g., the command
Delay). Also, all motion commands generate an “[3012][End of block.]” message, by default,
but this message can be deactivate with SetEOB. Furthermore, most motion commands
may also generate an “[3004][End of movement.]” message, if this option is activated with
SetEOM.

Note that the motion commands MoveLin, MoveJoints and MovePose are not executed if
they cannot be completed because of workspace limitations or singularities. In contrast, the
motion commands MoveLinRelTRF and MoveLinRelWRF are executed until a workspace
limit, a singularity or another problem (e.g., a collision) is encountered along the path.
Finally, all motion commands can generate errors, but these are explained in Section ??.

3.1.1 Delay(t)

This command is used to add a time delay after a motion command. In other words, the
robot completes all movements sent before the Delay command and stops temporarily. (In
contrast, the PauseMotion command interrupts the motion as soon as received by the robot.)

Arguments:

- t: desired pause length in seconds

3.1.2 GripperOpen/GripperClose

These two commands are used to open or close the gripper, respectively. The gripper will
move its fingers until the grip force reaches 40 N. You can reduce this maximum grip force
with the SetGripperForce command. In addition, you can control the speed of the gripper
with the SetGripperVel command.

It is very important to understand that the GripperOpen and GripperClose commands
have the same behavior as a robot motion command, being executed only after the preceding
motion command has been completed. Currently, however, if a robot motion command is
sent after the GripperOpen or GripperClose command, the robot will start executing the
motion command without waiting for the gripper to finish its action. You must therefore
send a Delay command after GripperOpen and GripperClose commands.

Page 12 of 42 Copyright c© 2018 by Mecademic Inc.

Programming Manual

Figure 6: End-effector motion when using the MoveJoints or MovePose commands.

3.1.3 MoveJoints(θ1, θ2, θ3, θ4, θ5, θ6)

This command makes the robot move simultaneously its joints to the specified joint set. All
joint rotations start and stop simultaneously The path that the robot takes is linear in the
joint space, but nonlinear in the Cartesian space. Therefore, the TCP path is not easily
predictable (Fig. 6). With MoveJoints, the robot can cross singularities without a problem.

Arguments:

- θi: the angle of joint i, where i = 1, 2, ..., 6, in degrees

Note that this is the only command that can make joint 6 move outside its normal range
of ±180◦. With this command, you can assign values for θ6 in the range ±180, 000◦.

3.1.4 MoveLin(x, y, z, α, β, γ)

This command makes the robot move its TRF to a specific pose with respect to the WRF
while keeping the TCP along a linear path in Cartesian space, as illustrated in Fig. 7. If the
final (desired) orientation of the TRF is different from the initial orientation, the orientation
will be modified along the path using SLERP interpolation.

Using this command, the robot cannot move to or through a singularity. This command
cannot automatically change the robot configuration. Finally, note that this command will
always move to a joint set (that corresponds to the desired pose) for which θ6 is in the range
±180◦. This restriction may lead to large rotations on joint 6.

Arguments:
- x, y, and z: the coordinates of the origin of the TRF w.r.t. the WRF, in mm

- α, β, and γ: the Euler angles representing the orientation of the TRF w.r.t. the WRF,
in degrees

Copyright c© 2018 by Mecademic Inc. Page 13 of 42

Programming Manual

Figure 7: The TCP path when using the MoveLin command.

3.1.5 MoveLinRelTRF(x, y, z, α, β, γ)

This command is similar to the MoveLin command, but allows a desired pose to be specified
relative to the current pose of the TRF. Thus, the arguments x, y, z, α, β, γ represent the
desired pose of the TRF with respect to the current pose of the TRF(i.e., the pose of the
TRF just before executing the MoveLinRelTRF command).

Arguments:
- x, y, and z: the position coordinates, in mm

- α, β, and γ: the Euler angles, in degrees

Note that this command will make the robot move to a joint set (corresponding to the
desired pose) for which θ6 is in the range ±180◦. This may lead to large rotations on joint 6.

3.1.6 MoveLinRelWRF(x, y, z, α, β, γ)

This command is similar to the MoveLinRelTRF command, but instead of defining the
desired pose with respect to the current pose of the TRF it is defined with respect to a
reference frame that has the same orientation as the WRF but its origin is at the current
position of the TCP. This command is mostly useful for jogging the robot.

Arguments:
- x, y, and z: the position coordinates, in mm

- α, β, and γ: the Euler angles, in degrees

Note that this command will make the robot move to a joint set (corresponding to the
desired pose) for which θ6 is in the range ±180◦. This may lead to large rotations on joint 6.

Page 14 of 42 Copyright c© 2018 by Mecademic Inc.

Programming Manual

3.1.7 MovePose(x, y, z, α, β, γ)

This command makes the robot move its TRF to a specific pose with respect to the WRF.
Essentially, the robot controller calculates all possible joint sets corresponding to the desired
pose and for which θ6 is in the range ±180◦, except those corresponding to a singular robot
position. Then, it either chooses the joint set that corresponds to the one desired configura-
tion or the one that is fastest to reach (see SetConf and SetAutoConf). Finally, it executes
a MoveJoints commands with the chosen joint set.

Thus, all joint rotations start and stop at the same time. The path the robot takes is
linear in the joint-space, but nonlinear in Cartesian space. Therefore, the path the TCP will
follow to its final destination is not easily predictable, as illustrated in Fig. 6.

Using this command, the robot can cross a singularity or start from a singular robot
position, as long as SetAutoConf is enabled. However, the robot cannot go to a singular
configuration using MovePose. For example, assuming that the TRF coincides with the FRF,
you cannot execute the command MovePose(190,0,308,0,90,0), since this pose corresponds
only to singular robot positions (e.g., the joint set {0,0,0,0,0,0}). You can only use the
MovePose command with a pose that corresponds to at least one non-singular robot position.

Once again, note that this command will make the robot move to a joint set (corresponding
to the desired pose) for which θ6 is in the range ±180◦. This restriction may lead to large
rotations on joint 6.

Arguments:
- x, y, and z: the coordinates of the origin of the TRF w.r.t. the WRF, in mm

- α, β, and γ: the Euler angles representing the orientation of the TRF w.r.t. the WRF,
in degrees

3.1.8 SetAutoConf(e)

This command enables or disables the automatic robot configuration selection and has effect
only on the MovePose command. This automatic selection allows the controller to choose
the “closest” joint set corresponding to the desired pose (the arguments of the MovePose
command) and for which θ6 is in the range ±180◦ (recall Section 2.2.3).

Arguments:

- e: enable (1) or disable (0) automatic configuration selection

Default values:

SetAutoConf is enabled by default. If you disable it, the new desired inverse kinematic
configuration will be the one corresponding to the current robot position, i.e., the one after

Copyright c© 2018 by Mecademic Inc. Page 15 of 42

Programming Manual

all preceding motion commands have been completed. Note, however, that if you disable
the automatic robot configuration selection in a singular robot position, the controller will
automatically choose one of the two, four or eight boundary configurations. For example, if
you execute SetAutoCon(0) while the robot is at the joint set {0,0,0,0,0,0}, the new desired
configuration will be {1,1,1}.

3.1.9 SetBlending(p)

This command enables/disables the robot’s blending feature. Note that the commands
MoveLin, MovePose, and MoveJoints will only send “[3004][End of movement.]” responses
when the robot comes to a complete stop and the command SetEOM(1) was used. Therefore,
enabling blending may suppress these responses.

Also, note that there is blending only between consecutive movements executed with the
commands MoveJoints and MovePose, or between consecutive movements executed with the
commands MoveLin, MoveLinRelTRF and MoveLinRelTRF. In other words, there will never
been blending between the paths of a MovePose command followed by a MoveLin command.

Arguments:

- p: percentage of blending, ranging from 0 (blending disabled) to 100%

Default values:

Blending is enabled at 100% by default.

3.1.10 SetCartAcc(p)

This command limits the Cartesian acceleration (both the linear and the angular) of the
end-effector. Note that this command makes the robot come to a complete stop, even if
blending is enabled.

Arguments:

- p: percentage of maximum acceleration of the end-effector, ranging from 1% to 100%

Default values:

The default end-effector acceleration limit is 100%.

3.1.11 SetCartAngVel(ω)

This command limits the angular velocity of the robot TRF with respect to its WRF. It only
affects the movements generated by the MoveLin, MoveLinRelTRF and MoveLinRelWRF
commands.

Page 16 of 42 Copyright c© 2018 by Mecademic Inc.

Programming Manual

Arguments:

- ω: TRF angular velocity limit, ranging from 0.001◦/s to 180◦/s

Default values:

The default end-effector angular velocity limit is 45◦/s.

3.1.12 SetCartLinVel(v)

This command limits the Cartesian linear velocity of the robot’s TRF with respect to
its WRF. It only affects the movements generated by the MoveLin, MoveLinRelTRF and
MoveLinRelWRF commands.

Arguments:

- v: TCP velocity limit, ranging from 0.001 mm/s to 500 mm/s

Default values:

The default TCP velocity limit is 150 mm/s.

3.1.13 SetConf(c1, c3, c5)

This command sets the desired robot inverse kinematic configuration to be observed in the
MovePose command.

The robot inverse kinematic configuration (see Fig. 5) can be automatically selected by
using the SetAutoConf command. Using SetConf automatically disables the automatic con-
figuration selection.

Arguments:

- c1: first inverse kinematics configuration parameter, either −1 or 1

- c3: second inverse kinematics configuration parameter, either −1 or 1

- c5: third inverse kinematics configuration parameter, either −1 or 1

3.1.14 SetGripperForce(p)

This command limits the grip force of the gripper.

Arguments:

- p: percentage of maximum grip force (∼40 N), ranging from 0 to 100%

Default values:

By default, the grip force limit is 50%.

Copyright c© 2018 by Mecademic Inc. Page 17 of 42

Programming Manual

3.1.15 SetGripperVel(p)

This command limits the velocity of the gripper fingers (with respect to the gripper).

Arguments:

- p: percentage of maximum finger velocity (∼100 mm/s), ranging from 1% to 100%

Default values:

By default, the finger velocity limit is 50%.

3.1.16 SetJointAcc(p)

This command limits the acceleration of the joints. Note that this command makes the robot
stop, even if blending is enabled.

Arguments:

- p: percentage of maximum acceleration of the joints, ranging from 1% to 100%

Default values:

The default joint acceleration limit is 100%.

3.1.17 SetJointVel(p)

This command limits the angular velocities of the robot joints. It affects the movements
generated by the MovePose and MoveJoints commands.

Arguments:

- p: percentage of maximum joint velocities, ranging from 1 to 100%

Default values:

By default, the limit is set to 25%.

Note that it is not possible to limit the velocity of only one joint. With this command, the
maximum velocities of all joints are limited proportionally. In other words, the maximum
velocity of each joint will be reduced to a percentage p of its top velocity. The top velocity
of joints 1 and 2 is 150◦/s, of joint 3 is 180◦/s, of joints 4 and 5 is 300◦/s, and of joint 6 is
500◦/s.

3.1.18 SetTRF(x, y, z, α, β, γ)

This command defines the pose of the TRF with respect to the FRF. Note that this command
makes the robot come to a complete stop, even if blending is enabled.

Page 18 of 42 Copyright c© 2018 by Mecademic Inc.

Programming Manual

Arguments:

- x, y, and z: the coordinates of the origin of the TRF w.r.t. the FRF, in mm

- α, β, and γ: the Euler angles representing the orientation of the TRF w.r.t. the FRF,
in degrees

Default values:

By default, the TRF coincides with the FRF.

3.1.19 SetWRF(x, y, z, α, β, γ)

This command defines the pose of the WRF with respect to the BRF. Note that this com-
mand makes the robot come to a complete stop, even if blending is enabled.

Arguments:

- x, y, and z: the coordinates of the origin of the WRF w.r.t. the BRF, in mm

- α, β, and γ: the Euler angles representing the orientation of the WRF w.r.t. the BRF,
in degrees

3.2 Request commands

Request commands are used mainly to get status updates from the robot. Once received,
the robot will immediately execute the command (e.g., return the requested information).
For example, if you send a MoveJoints command, followed by a GetPose command, you will
not get the final pose of the TRFbut an intermediate one, very close to the starting pose.
To get the final pose, you need to make sure that the robot has completed its movement,
before sending the GetPose. While some of these request commands make the robot move
or stop (e.g., StartProgram or PauseMotion), request commands do not have a lasting effect
on subsequent motions.

In the following subsections, the request commands are presented in alphabetical order.
Most request commands do not have arguments. Note that the commands PauseMotion
ClearMotion, and ResumeMotion have direct effect on the movement of the robot, but they
are considered request commands, since they are executed as soon as received. Finally, the
format of the robot response is summarized in Section 3.3.2.

3.2.1 ActivateRobot

This command activates all motors and disables the brakes on joints 1, 2, and 3. It must be
sent before homing is started. This command only works if the robot is idle.

Copyright c© 2018 by Mecademic Inc. Page 19 of 42

Programming Manual

Responses:

[2000][Motors activated.]
[2001][Motors already activated.]

The first response is generated if the robot was not active, while the second one is gener-
ated if the robot was already active.

3.2.2 ActivateSim

The Meca500 supports a simulation mode in which all of the robot’s hardware functions
normally, but none of the motors move. This mode allows you to test programs with the
robot’s hardware (i.e., hardware-in-the-loop simulation), without the risk of damaging the
robot or its surroundings. Simulation mode can be activated and deactivated with the
ActivateSim and DeactivateSim commands.

Responses:

[2045][The simulation mode is enabled.]

3.2.3 ClearMotion

This command stops the robot movement, in the same fashion as the PauseMotion command
(i.e., by decelerating). However, if the robot is stopped in the middle of a trajectory, the rest
of the trajectory is deleted. As is the case with PauseMotion you need to send the command
ResumeMotion to make the robot ready to execute new motion commands.

Responses:

[2044][The motion was cleared.]
[3004][End of movement.]

3.2.4 DeactivateRobot

This command disables all motors and engages the brakes on joints 1, 2, and 3. It must not
be sent while the robot is moving. Deactivating the robot while in motion could damage the
joints. This command should be run before powering down the robot.

When this command is executed, the robot loses its homing. The homing process must
be repeated after reactivating the robot.

Responses:

[2004][Motors deactivated.]

Page 20 of 42 Copyright c© 2018 by Mecademic Inc.

Programming Manual

3.2.5 DeactivateSim

This command deactivates the simulation mode. See the description of the ActivateSim
command, for an overview of Meca500’s simulation mode.

Responses:

[2046][The simulation mode is disabled.]

3.2.6 BrakesOn/BrakesOff

These commands enables or disable the brakes of joints 1, 2 and 3, if and only if the robot
is powered but deactivated. The command returns no message.

Responses:

[2010][All brakes set.]
[2008][All brakes released.]

3.2.7 GetConf

This command returns the robot current inverse kinematic configuration (see Fig. 5).

Responses:

[2029][c1, c3, c5]

- c1: first inverse kinematic configuration parameter, either −1 or 1

- c3: second inverse kinematic configuration parameter, either −1 or 1

- c5: third inverse kinematic configuration parameter, either −1 or 1

Note that, currently, if you request the inverse kinematic configuration, while the robot is
in a robot singularity, the controller will automatically choose one of the two, four or eight
boundary configurations. For example, if you execute GetConf while the robot is at the joint
set {0,0,0,0,0,0}, the robot will return the configuration {1,1,1}.

3.2.8 GetJoints

This command returns the robot joint angles in degrees.

Responses:

[2026][θ1, θ2, θ3, θ4, θ5, θ6]

- θi: the angle of joint i, in degrees, where i = 1, 2, ..., 6

Note that the values for θ6 returned are in the range [−180, 000◦, 180, 000◦].

Copyright c© 2018 by Mecademic Inc. Page 21 of 42

Programming Manual

3.2.9 GetPose

This command returns the current pose of the robot TRF with respect to the WRF.

Responses:

[2027][x, y, z, α, β, γ]

- x, y, and z: the coordinates of the origin of the TRF w.r.t. the WRF, in mm;

- α, β, and γ: the Euler angles representing the orientation of the TRF w.r.t. the WRF,
in degrees.

3.2.10 GetStatusGripper

This command returns the gripper’s status.

Responses:

[2079][ge, hs, ph, lr, es, fo]

- ge: gripper enabled, i.e., present (0 for disabled, 1 for enabled)

- hs: homing state (0 for homing not performed, 1 for homing performed)

- ph: holding part (0 if the gripper does not hold a part, 1 otherwise)

- lr: limit reached (0 if the fingers are not fully open or closed, 1 otherwise)

- es: error state (0 for absence of error, 1 for presence of error)

- fo: force overload (0 if there is no overload, 1 if the gripper is in force overload)

3.2.11 GetStatusRobot

This command returns the status of the robot.

Responses:

[2007][as, hs, sm, es, pm, eob, eom]

- as: activation state (0 for not activated, 1 for activated)

- hs: homing state (0 for homing not performed, 1 for homing performed)

- sm: simulation mode (0 for simulation mode disabled, 1 for simulation mode enabled)

- es: error status (0 for robot not in error mode, 1 for robot in error mode)

- pm: pause motion status (0 for robot not in pause motion, 1 for robot in pause motion)

- eob: end of block status (0 for end of block disabled, 1 if enabled)

- eom: end of movement status (0 for end of movement disabled, 1 if enabled)

Note that pm = 1 if and only if a PauseMotion or a ClearMotion was sent, or if the robot
is in error mode.

Page 22 of 42 Copyright c© 2018 by Mecademic Inc.

Programming Manual

3.2.12 Home

This command starts the robot and gripper homing process (Section 2.2.1). While homing,
it is critical to remove any obstacles that could hinder the robot and gripper movements.
This command takes about four seconds to execute.

Responses:

[2002][Homing done.]
[2003][Homing already done.]
[1014][Homing failed.]

The first response is sent if homing was completed successfully, while the second one is
sent if the robot is already homed. The third response is sent if the homing procedure failed.

3.2.13 PauseMotion

This command stops the robot movement. The command is executed as soon as received
(within approximately 5 ms from it being sent, depending on your network configuration),
but the robot stops by decelerating, and not by applying the brakes. For example, if a
MoveLin command is currently being executed when the PauseMotion command is received,
the robot TCP will stop somewhere along the linear path. If you want to know where exactly
did the robot stop, you can use the GetPose or GetJoints commands.

Strictly speaking, the PauseMotion command pauses the robot motion; the rest of the
trajectory is not deleted and can be resumed with the ResumeMotion command. The
PauseMotion command is useful if you develop your own HMI and need to implement a
pause button. It can also be useful if you suddenly have a problem with your tool (e.g.,
while the robot is applying an adhesive, the reservoir becomes empty).

The PauseMotion command normally generates the following two responses. The first
one is always sent, whereas the second one is sent only if the robot was moving when it
received the PauseMotion command.

Finally, if a motion error occurs while the robot is at pause (e.g., if another moving body
hits the robot), the motion is cleared and can no longer be resumed.

Responses:

[2042][Motion paused.]
[3004][End of movement.]

Copyright c© 2018 by Mecademic Inc. Page 23 of 42

Programming Manual

3.2.14 ResetError

This command resets the robot error status. The command can generate one of the following
two responses. The first response is generated if the robot was indeed in an error mode, while
the second one is sent if the robot was not in error mode.

Responses:

[2005][The error was reset.]
[2006][There was no error to reset.]

3.2.15 ResumeMotion

This command resumes the robot movement, if it was previously paused with the command
PauseMotion. More precisely, the robot TCP resumes the rest of the trajectory from the
pose where it was brought to a stop (after deceleration).

This command will not work if the robot was deactivated after the last time the command
PauseMotion was used, if the robot is in an error mode, or if the rest of the trajectory was
deleted using the ClearMotion command.

Note that it is not possible to pause the motion along a trajectory, have the end-effector
move away, then have it come back, and finally resume the trajectory. If you send motion
commands while the robot is paused, they will simply be placed in the queue.

Responses:

[2043][Motion resumed.]

3.2.16 SetEOB(e)

When the robot completes a motion command or a block of motion commands, it can send
the message “[3012][End of block.]”. This means that there are no more motion commands
in the queue and the robot velocity is zero. The user could enable or disable this message
by sending this command.

Arguments:

- e: enable (1) or disable (0) message

Default values:

By default, the end-of-block message is enabled.

Page 24 of 42 Copyright c© 2018 by Mecademic Inc.

Programming Manual

Responses:

[2054][End of block is enabled.]
[2055][End of block is disabled.]

3.2.17 SetEOM(e)

The robot can also send the message “[3004][End of movement.]” as soon as the robot veloc-
ity becomes zero. This can happen after the commands MoveJoints, MovePose, MoveLin,
MoveLinRelTRF, MoveLinRelWRF, PauseMotion and ClearMotion commands, as well as
after the SetCartAcc and SetJointAcc commands. Recall, however, that is blending is en-
abled (even only partially), then there would be no end-of-movement message between two
consecutive Cartesian-mode commands (MoveLin, MoveLinRelTRF, MoveLinRelWRF) or
two consecutive joint-mode commands (MoveJoints, MovePose).

Arguments:

- e: enable (1) or disable (0) message

Default values:

By default, the end-of-movement message is disabled.

Responses:

[2052][End of movement is enabled.]
[2053][End of movement is disabled.]

3.2.18 SetOfflineProgramLoop(e)

This command is used to define whether the program that is to be saved must later be
executed a single time or infinitely many times.

Arguments:

- e: enable (1) or disable (0) the loop execution

Default values:

By default, looping is disabled.

Responses:

[1022][Robot was not saving the program.]

This command does not generate an immediate response. It is only when saving a pro-
gram, that a message indicates whether loop execution was enabled or disabled. However,
if the command is sent while no program is being saved, the above message is returned.

Copyright c© 2018 by Mecademic Inc. Page 25 of 42

Programming Manual

3.2.19 StartProgram(n)

To start the program that has been previously saved in the robot memory, the robot must be
activated prior to using the StartProgram command. The number of times the program will
be executed is defined with the SetOfflineProgramLoop command. Note that you can either
use this command, or simply press the Start/Stop button on the robot base (provided that
no one is connected to the robot). However, pressing the Start/Stop button on the robot
base will only start program 1.

Arguments:

- n: program number, where n ≤ 500 (maximum number of programs that can be stored)

Responses:

[2063][Offline program started.]
[3017][No offline program saved.]

3.2.20 StartSaving(n)

The Meca500 is equipped with several membrane buttons on its base, of which a Start/Pause
button. These can be used to run a simple program (possibly in loop), when no external
device is connected to the robot. For example, this feature is particularly useful for running
demos. To distinguish this program, which will reside in the memory of the robot controller,
from any other programs that will be sent to the robot and executed line by line, it will be
referred to as an offline program.

To save such an offline program, the robot must be deactivated first. Then you need to use
the StartSaving and StopSaving commands. Note that the program will remain in the robot
internal memory even after disconnecting the power. To clear a specific program, simply
overwrite a new program by using the StartSaving command with the same argument.

The StartSaving command starts the recoding of all subsequent motion commands, as
long as the robot is deactivated. Once the robot receives this command, it will generate
the first of the two responses given bellow and start waiting for the command(s) to save. If
the robot receives commands that are not of motion type (GetJoints, GetPose, etc.), it will
generate the second response and clear the whole offline program. Since the robot must be
deactivated during the saving process, it will not enter error mode

Note that the maximum number of motion commands that can be saved is 13,000.

Arguments:

- n: program number, where n ≤ 500 (maximum number of programs that can be stored)

Page 26 of 42 Copyright c© 2018 by Mecademic Inc.

Programming Manual

Responses:

[2060][Start saving program.]
[1023][Ignoring command for offline mode. - Command: "..."]

3.2.21 StopSaving

This command will make the controller save the program and end the saving process. Two
responses will be generated: the first and the second or third of the three responses given
bellow. Finally, if you send this command while the robot is not saving a program, the fourth
response will be returned.

Responses:

[2061][n commands saved.]
[2064][Offline program looping is enabled.]
[2065][Offline program looping is disabled.]
[1022][Robot was not saving the program.]

3.2.22 SwitchToEtherCAT

This command will disable the Ethernet TCP/IP protocol and enable EtherCAT (see Sec-
tion 4).

3.3 Responses

The Meca500 sends responses (also referred to as messages) when it encounters an error,
when it receives a request command, and when its status changes. All responses from the
Meca500 consist of an ASCII string in the following format:

[4-digit code][text message OR comma-separated return values]

The four-digit code indicates the type of response:

• [1000] to [1999]: Error message due to a command

• [2000] to [2999]: Response to a command, or pose and joint set feedback

• [3000] to [3999]: Status update message or general error

The second part of a command error message [1xxx] or a status update message [3xxx]
will always be a description text. The second part of a command response [2xxx] may be a
description text or a set of comma-separated return values, depending on the command.

All text descriptions are intended to communicate information to the user and are subject
to change without notice. For example, the description “Homing failed” may eventually be

Copyright c© 2018 by Mecademic Inc. Page 27 of 42

Programming Manual

replaced by “Homing has failed.” Therefore, you must rely only on the four-digit code of
such messages. However, any changes in the codes or in the format of the comma-separated
return values will always be documented in the firmware upgrade manual. Finally, return
values are either integers or IEEE-754 floating-point numbers with three decimal places.

3.3.1 Command error messages

When the Meca500 encounters an error while executing a command, it goes into error mode.
All pending commands are canceled. The robot stops and ignores subsequent commands
until it receives a ResetError command. Table 1 lists all command error messages.

Table 1: List of command error messages

Message Explanation

[1000][Command buffer is full.] Maximum number of queued commands
reached. Retry by sending fewer commands at
a time.

[1001][Empty command or command unrecog-
nized. - Command: "..."]

Unknown or empty command.

[1002][Syntax error, symbol missing. - Com-
mand: "..."]

A parenthesis or a comma has been omitted.

[1003][Argument error. - Command: "..."] Wrong number of arguments or invalid input
(e.g., the argument is out of range).

[1005][The robot is not activated.] Robot is not activated. Send the ActivateRobot
command.

[1006][The robot is not homed.] The robot is not homed. Send the Home com-
mand.

[1007][Joint over limit. - Command: "..."] The robot cannot reach the joint set or pose
requested because of its joint limits.

[1011][The robot is in error.] A command has been sent but the robot is
in error mode and cannot process it until a
ResetError command is sent.

[1012][Singularity detected.] The MoveLin command sent requires that
the robot pass through a singularity, or the
MovePose command sent requires that the
robot goes to a singular robot position.

[1013][Activation failed.] Activation failed. Try again.
[1014][Homing failed.] Homing procedure failed. Try again.

Page 28 of 42 Copyright c© 2018 by Mecademic Inc.

Programming Manual

Table 1: (continued)

Message Explanation

[1016][Pose out of reach.] The pose requested in the MoveLin or
MovePose commands cannot be reached by the
robot (even if the robot had no joint limits).

[1017][Communication failed. - Command:
"..."]

Problem with communication.

[1018][’\0’ missing. - Command: "..."] Missing NULL character at the end of a com-
mand.

[1020][Brakes cannot be released.] Something is wrong. The brakes cannot be re-
leased. Try again.

[1021][Deactivation failed. - Command: "..."] Something is wrong. The deactivation failed.
Try again.

[1022][Robot was not saving the program.] The command StopSaving was sent, but the
robot was not saving a program.

[1023][Ignoring command for offline mode. -
Command: "..."]

The command cannot be executed in the offline
program.

[1024][Mastering needed. - Command: "..."] Somehow, mastering was lost. Contact Meca-
demic.

[1025][Impossible to reset the error. Please,
power-cycle the robot.]

Turn off the robot, then turn it back on in order
to reset the error.

[1026][Deactivation needed to execute the com-
mand. - Command: "..."]

The robot must be deactivated in order to exe-
cute this command.

[1027][Simulation mode can only be en-
abled/disabled while the robot is deactivated.]

The robot must be deactivated in order to exe-
cute this command.

[1028][Network error.] Error on the network. Resend the command.
[1029][Offline program full. Maximum program
size is 13,000 commands. Saving stopped.]

Memory full.

[1038][No gripper connected.] No gripper was detected.

3.3.2 Command responses and pose and joint set feedback

Table 2 presents a summary of all motion and request commands and the possible non-
error responses for each of them. Note that many of the commands do not generate specific
command responses and may generate only an End-of-block and/or End-of-Motion messages.

In addition, the Meca500 is configured to continuously send position feedback over TCP/IP
port 10001. Two kinds of feedback messages are sent over this port: joint set feedback and
pose feedback. Joint set feedback returns the angles of the robot joints (i.e., joint set). Pose

Copyright c© 2018 by Mecademic Inc. Page 29 of 42

Programming Manual

feedback returns the pose of the TRF with respect to the WRF. Feedback messages are sent
over TCP/IP approximately every 15 ms. To obtain faster response times, use EtherCAT.

The format of the responses for the joint set and the pose feedback is, respectively

[2102][θ1, θ2, θ3, θ4, θ5, θ6]
[2103][x, y, z, α, β, γ]

Table 2: List of possible responses to a command

Command Possible response(s)

ActivateRobot [2000][Motors activated.]
[2001][Motors already activated.]

ActivateSim [2045][The simulation mode is enabled.]
ClearMotion [2044][The motion was cleared.]
DeactivateRobot [2004][Motors deactivated.]
DeactivateSim [2046][The simulation mode is disabled.]
Delay [3012][End of block.]
BrakesOn [2008][All brakes released.]
BrakesOff [2010][All brakes set.]
GetConf [2029][c1, c3, c5]
GetJoints [2026][θ1, θ2, θ3, θ4, θ5, θ6]
GetStatusRobot [2007][as, hs, sm, es, pm, eob, eom]
GetStatusGripper [2079][ge, hs, ph, lr, es, fo]
GetPose [2027][x, y, z, α, β, γ]
GripperClose [3012][End of block.]
GripperOpen [3012][End of block.]
Home [2002][Homing done.]

[2003][Homing already done.]
MoveJoints [3004][End of movement.]

[3012][End of block.]
MoveLin [3004][End of movement.]

[3012][End of block.]
MoveLinRelTRF [3004][End of movement.]

[3012][End of block.]
MoveLinRelWRF [3004][End of movement.]

[3012][End of block.]
MovePose [3004][End of movement.]

[3012][End of block.]
PauseMotion [2042][Motion paused.]

[3004][End of movement.]

Page 30 of 42 Copyright c© 2018 by Mecademic Inc.

Programming Manual

Table 2: (continued)

Command Possible response(s)

ResetError [2005][The error was reset.]
[2006][There was no error to reset.]

ResumeMotion [2043][Motion resumed.]
SetAutoConf [3012][End of block.]
SetCartAcc [3004][End of movement.]*

[3012][End of block.]
SetCartLinVel [3012][End of block.]
SetCartAngVel [3012][End of block.]
SetConf [3012][End of block.]
SetBlending [3012][End of block.]
SetGripperVel [3012][End of block.]
SetJointAcc [3004][End of movement.]*

[3012][End of block.]
SetJointVel [3012][End of block.]
SetEOB [2054][End of block is enabled.]

[2055][End of block is disabled.]
SetEOM [2052][End of movement is enabled.]

[2052][End of movement is enabled.]
SetOfflineProgramLoop [1022][Robot was not saving the program.]
SetTRF [3004][End of movement.]*

[3012][End of block.]
SetWRF [3004][End of movement.]*

[3012][End of block.]
StartProgram [3004][End of movement.]
StartSaving [2060][Start saving program.]

[2064][Offline program looping is enabled.]
[2065][Offline program looping is disabled.]

StopSaving [2061][n commands saved.]
[2064][Offline program looping is enabled.]
[2065][Offline program looping is disabled.]

* The EOM message is sent only if the robot was moving while the command was received (and, of

course, if EOM was enabled).

Copyright c© 2018 by Mecademic Inc. Page 31 of 42

Programming Manual

3.3.3 Status messages

Status messages generally occur without any specific action from the network client. These
could contain general status (e.g., when the robot has ended its motion) or error messages
(e.g., error of motion if the robot entered in collision). Table 3 lists all possible status
messages.

Table 3: List of all status messages

Message Explanation

[3000][Connected to Meca500 x_x_x.x.x.] Confirms connection to robot.
[3001][Another user is already connected, clos-
ing connection.]

Another user is already connected to the
Meca500. The robot disconnects from the user
immediately after sending this message.

[3003][Command has reached the maximum
length.]

Too many characters before the NUL charac-
ter. Most probably caused by a missing NUL
character

[3004][End of movement.] The robot has stopped moving.
[3005][Error of motion.] Motion error. Most probably caused by a colli-

sion or an overload. Correct the situation and
send the ResetError command. If the motion
error persists, try power-cycling the robot.

[3009][Robot initialization failed due to an in-
ternal error. Restart the robot.]

Error in robot startup procedure. Contact
Mecademic if restarting the Meca500 did not
resolve the issue.

[3012][End of block.] No motion command in queue and robot joints
do not move.

[3013][End of offline program.] The offline program has finished.
[3014][Problem with saved program, save a new
program.]

There was a problem saving the program.

[3016][Ignoring command while in offline mode.] A non-motion command was sent while execut-
ing a program and was ignored.

[3017][No offline program saved.] There is no program in memory.
[3018][Loop ended. Restarting the program.] The offline program is being restarted.
[3026][Robot’s maintenance check has discov-
ered a problem. Mecademic cannot guar-
anty correct movements. Please contact Meca-
demic.]

A hardware problem was detected. Contact
Mecademic.

Page 32 of 42 Copyright c© 2018 by Mecademic Inc.

Programming Manual

4 Communicating over EtherCAT

EtherCAT is an open real-time Ethernet protocol originally developed by Beckhoff Automa-
tion. When communicating with the Meca500 over EtherCAT, you can obtain guaranteed
response times of 0.2 ms. Furthermore, you no longer need to parse strings as when using
the TCP/IP protocol.

4.1 Overview

4.1.1 Connection types

If using EtherCAT, you can connect several Meca500 robots in different network topologies,
including line, star, tree, or ring, since each robot has a unique node address. This enables
targeted access to a specific robot even if your network topology changes.

4.1.2 ESI file

The EtherCAT Slave Information (ESI) XML file for the Meca500 robot can be found here.

4.1.3 Enabling EtherCAT

The default communication protocol of the robot is the Ethernet TCP/IP protocol. The
latter is the protocol needed for jogging the robot through its web interface. To switch to the
EtherCAT communication protocol, you must connect to the robot via the TCP/IP protocol
first from an external client (e.g., a standard computer). If you are already connected, you
must deactivate the robot (by sending the command DeactivateRobot). Then, you must
simply send the SwitchToEtherCAT command.

As soon as the robot receives this command, the LED corresponding to the Ethernet
TCP/IP connection (i.e., #1 or #2 in Fig. 8) will go off, then turn back on. This means
that the robot is now in EtherCAT mode. Now, it is possible to connect to an EtherCAT
master.

4.1.4 LEDs

When the EtherCAT communication protocol is enabled, the three LEDs on the outer edge of
the robot’s base (Fig. 8) communicate the state of the EtherCAT connection, as summarized
in Table 4.

Copyright c© 2018 by Mecademic Inc. Page 33 of 42

 https://www.mecademic.com/Downloads/Updates/

Programming Manual

Figure 8: EtherCAT LEDs

LED Name LED State EtherCAT state

On Link is active but there is no activity
#1 IN port link Blinking Link is active and there is activity

Off Link is inactive
On Link is active but there is no activity

#2 OUT port link Blinking Link is active and there is activity
Off Link is inactive

#3 Run

On Operational
Blinking Pre-Operational
Single flash Safe-Operational
Off Init

Table 4: Meanings of the EtherCAT related LEDs

4.1.5 Activating and homing the robot

After enabling the EtherCAT protocol, the robot must be activated and homed by following
the sequence presented in Figure 9.

4.2 Object dictionary

This section describes all objects available for interacting with the Meca500. In the tables
of this section, SI stands for subindex, and “O. code” for “Object code”.

4.2.1 Switch mode

When this register passes from 0 to 1, the robot switches back to the Ethernet TCP/IP
connection (see Table 5). To go back to EtherCAT mode, you must send the command
SwitchToEtherCAT.

Index SI O. code Type Name Default Minimum Maximum Access PDO Units

7010h Variable UDINT Switch mode 0h 0h 1h RW none

Table 5: Switch to Ethernet TCP/IP object

Page 34 of 42 Copyright c© 2018 by Mecademic Inc.

Programming Manual

Cycle
0 1 2 3 4 5 6 7 8 9 10 11

Command

60
10
h

Busy

Activated

Homed

72
00
h

Enable

Activate

Home

Figure 9: Timing diagram to activate and home the robot

4.2.2 Robot control

This object controls the robot’s initialization and simulation. It has five subindexes:

1. Enable: enables the robot control object.

2. Activate: activates or deactivates the robot.

3. Home: homes the robot.

4. Reset error: resets the error.

5. Simulation mode: enables or disables the simulation mode.

The first subindex, Enable, must be set to high, for the other four to have any effect.
If the Enable subindex becomes low while one of the other four subindexes is high, the
corresponding command will be canceled. For example, if initially Enable and Activate are
high, and Enable becomes low, the robot will be deactivated. The simulation mode can be
active only if the robot is deactivated. Table 6 describes the five registers.

Index SI O. code Type Name Default Minimum Maximum Access PDO Units

7200h Record Robot control RO none
1 BOOL Enable 0h 0h 1h RW 1600h:1
2 BOOL Activate 0h 0h 1h RW 1600h:2
3 BOOL Home 0h 0h 1h RW 1600h:3
4 BOOL Reset error 0h 0h 1h RW 1600h:4
5 BOOL Sim mode 0h 0h 1h RW 1600h:5

Table 6: Robot control object

Copyright c© 2018 by Mecademic Inc. Page 35 of 42

Programming Manual

4.2.3 Motion control

This object controls the actual robot movement. It has four subindexes (Table 7):

1. SetPoint: Has to be high for information to be sent to the robot at every cycle.

2. Pause: Puts the robot in pause without clearing the commands in the queue.

3. Resume: Resumes the trajectory after a pause.

4. Clear move: Erases the motion commands in the queue and put the robot in pause.

Index SI O. code Type Name Default Minimum Maximum Access PDO Units

7310h Record Motion control RO none
1 BOOL SetPoint 0h 0h 1h RW 1601h:1
2 BOOL Pause 0h 0h 1h RW 1601h:2
3 BOOL Resume 0h 0h 1h RW 1601h:3
4 BOOL Clear move 0h 0h 1h RW 1601h:4

Table 7: Motion control object

It is very important to understand that the SetPoint subindex has to be set high (1) if
you want to send motion information and parameters to the robot. When this subindex is
low (0), no commands are considered by the robot. However, if the SetPoint register is set
to low when there are still motion commands in the motion queue, the robot will complete
all movements in the queue before coming to a halt.

4.2.4 Movement

The movement object is a pair of registers and regroups the main motion commands. The
first register is a number indicating the motion command, as follows, while the second register
has six subindexes corresponding to the arguments of the motion command (Table 8):

0. No movement: all six subindexes are ignored.

1. MoveJoints: all six subindexes are in degrees.

2. MovePose: subindexes 1, 2, 3 are in mm and 4, 5, 6 are in degrees.

3. MoveLin: subindexes 1, 2, 3 are in mm and 4, 5, 6 are in degrees.

4. MoveLinRelTRF: subindexes 1, 2, 3 are in mm and 4, 5, 6 are in degrees.

5. MoveLinRelWRF: subindexes 1, 2, 3 are in mm and 4, 5, 6 are in degrees.

6. Delay: subindex 1 is in seconds, the rest are ignored.

It is recommended to set the 7305h register to zero, when you no longer need to send
a motion command. If you leave this register at 1, 2, 3, 4 or 5, and instead only set the
SetPoint register to low, the next time to set the SetPoint register to high, the robot will
move again.

Page 36 of 42 Copyright c© 2018 by Mecademic Inc.

Programming Manual

Index SI O. code Type Name Default Minimum Maximum Access PDO Units

7305h Variable UDINT Move command 0h 0h 6h RO 1602h.1
7306h Record Move arguments RO none

1 REAL 0.0 RW 1602h.2 ◦ | mm | s
2 REAL 0.0 RW 1602h.3 ◦ | mm
3 REAL 0.0 RW 1602h.4 ◦ | mm
4 REAL 0.0 RW 1602h.5 ◦

5 REAL 0.0 RW 1602h.6 ◦

6 REAL 0.0 RW 1602h.7 ◦

Table 8: Movement object

4.2.5 WRF

This object defines the pose of the world reference frame (WRF) with respect to the base
reference frame (BRF), as detailed in Table 9.

Index SI O. code Type Name Default Minimum Maximum Access PDO Units

7340h Array WRF RO none
1 REAL 0.0 RW 1603h.1 mm
2 REAL 0.0 RW 1603h.2 mm
3 REAL 0.0 RW 1603h.3 mm
4 REAL 0.0 RW 1603h.4 ◦

5 REAL 0.0 RW 1603h.5 ◦

6 REAL 0.0 RW 1603h.6 ◦

Table 9: WRF object

4.2.6 TRF

This object defines the pose of the tool reference frame (TRF) with respect to the flange
reference frame (FRF), as detailed in Table 10.

Index SI O. code Type Name Default Minimum Maximum Access PDO Units

7350h Array TRF RO none
1 REAL 0.0 RW 1604h.1 mm
2 REAL 0.0 RW 1604h.2 mm
3 REAL 0.0 RW 1604h.3 mm
4 REAL 0.0 RW 1604h.4 ◦

5 REAL 0.0 RW 1604h.5 ◦

6 REAL 0.0 RW 1604h.6 ◦

Table 10: TRF object

Copyright c© 2018 by Mecademic Inc. Page 37 of 42

Programming Manual

4.2.7 Motion settings

The motion settings object (Table 11) is used to define the velocity and acceleration of the
robot. It also controls the blending and the configuration of the robot.

The values for the first six subindexes of this object are assigned as defined in Section 3.1.
The value for the seventh subindex, however, defines the desired robot configuration as a
hexadecimal 8-bit unsigned integer, as described in Table 12. The bits 7 through 4 are
ignored. The values c1, c3, and c5 are explained in Section 2.2.3, and the value of AutoConf
in Section 3.1.8. The function IsPositive(1) returns 1 and IsPositive(-1) returns 0. The
combination c1, c3, c5 defines the desired configuration of the robot, as long as the value for
bit 3 (AutoConf) is low. If the value for bit 3 is high, then the configuration of the robot is
chosen automatically. By default, the value for bit 3 is high, so the values of bits 2, 1 and 0
are ignored. In that sense, the default value of object 7360h.7 is irrelevant.

Index SI O. code Type Name Default Minimum Maximum Access PDO Units

7360h Record Motion settings RO none
1 REAL Cart. lin. velocity 150.0 0.001 500.0 RW 1605h.1 mm/s
2 REAL Cart. ang. velocity 45.0 0.001 180.0 RW 1605h.2 ◦/s
3 REAL Cart. acceleration 100.0 1.0 100.0 RW 1605h.3 %
4 REAL Joint velocity 25.0 1.0 100.0 RW 1605h.4 %
5 REAL Joint acceleration 100.0 1.0 100.0 RW 1605h.5 %
6 REAL Blending 100.0 0.0 100.0 RW 1605h.6 %
7 USINT Configuration n/a 0h Fh RW 1605h.7

Table 11: Motion settings object

Configuration subindex

Bit 7 6 5 4 3 2 1 0
Value n/a n/a n/a n/a AutoConf IsPositive(c5) IsPositive(c3) IsPositive(c1)

Table 12: Configuration subindex definition

4.2.8 MEGP 25 (gripper)

The MEGP 25 object is used to control the robot’s optional gripper. It has four subindexes
(Table 13):

1. Enable: Must be 1 to enable the gripper.

2. Velocity: Grasping velocity in percentage of maximum speed.

3. Force: Grasping force in percentage of maximum force.

4. Open: 0 to close, 1 to open.

Page 38 of 42 Copyright c© 2018 by Mecademic Inc.

Programming Manual

Index SI O. code Type Name Default Minimum Maximum Access PDO Units

7500h Record MEGP 25 RO none
1 REAL Velocity 50.0 1.0 100.0 RW 1606h.1 %
2 REAL Force 50.0 0.0 100.0 RW 1606h.2 %
3 BOOL Open 0h 0h 1h RW 1606h.3
4 BOOL Enable 0h 0h 1h RW 1606h.4

Table 13: Gripper object

4.2.9 Robot status

The robot status object makes it possible to know the actual state of the robot (see Table 14).
This object has five subindexes (SI):

1. Busy: Indicates whether the robot is being activated, homed or deactivated.

2. Activated: Indicates whether the motors are online and ready to home.

3. Homed: Indicates whether the robot is homed and ready to receive motion commands.

4. SimActivated: Indicates whether the robot is activating, homing or deactivating.

5. Error: Indicates whether an error (any type) is present.

Index SI O. code Type Name Default Minimum Maximum Access PDO Units

6010h Record Robot status RO none
1 BOOL Busy 0h 0h 1h RO 1A00h.1
2 BOOL Activated 0h 0h 1h RO 1A00h.2
3 BOOL Homed 0h 0h 1h RO 1A00h.3
4 BOOL SimActivated 0h 0h 1h RO 1A00h.4
5 BOOL Error 0h 0h 1h RO 1A00h.5

Table 14: Robot status object

4.2.10 Motion status

The motion status object makes it possible to know the actual state of the robot’s motion
(see Table 15). This object has four subindexes (SI):

1. FIFO space: Indicates the number of commands that the robot can receive at a par-
ticular moment. If 0 (i.e. too many commands have been sent), subsequent commands
will be ignored. The default value is 10,000.

2. Actual conf: Indicates the actual configuration of the robot as an 8-bit unsigned integer,
where bits 7 through 3 are 0, bit 2 is 1 if c5 = 1 and 0 if c5 = −1, bit 1 is 1 if c3 = 1

and 0 if c3 = −1, and bit 0 is 1 if c1 = 1 and 0 if c1 = −1. Thus, this subindex has no
default value and ranges from 0h to 7h.

3. Paused: Indicates whether the motion is paused.

Copyright c© 2018 by Mecademic Inc. Page 39 of 42

Programming Manual

4. EOB: Indicates whether the robot is not moving AND there is no motion command
left in its buffer.

5. EOM: Indicates whether the robot is not moving.

Index SI O. code Type Name Default Minimum Maximum Access PDO Units

6015h Record Motion status RO none
1 UDINT FIFO space 3E8h 0h 3FFFFFFFh RO 1A01h.1
2 USINT Actual conf n/a 0h 7h RO 1A01h.2
3 BOOL Paused 0h 0h 1h RO 1A01h.3
4 BOOL EOB 1h 0h 1h RO 1A01h.4
5 BOOL EOM 1h 0h 1h RO 1A01h.5

Table 15: Motion status object

4.2.11 Angular position (joint set)

The joint set object contains the current joint angles of the robot (see Table 16).

Index SI O. code Type Name Default Minimum Maximum Access PDO Units

6030h Array Angular position RO none
1 REAL n/a −175.0 175.0 RO 1A02h.1 ◦

2 REAL n/a −70.0 90.0 RO 1A02h.2 ◦

3 REAL n/a −135.0 70.0 RO 1A02h.3 ◦

4 REAL n/a −170.0 170.0 RO 1A02h.4 ◦

5 REAL n/a −115.0 115.0 RO 1A02h.5 ◦

6 REAL n/a −36,000.0 36,000.0 RO 1A02h.6 ◦

Table 16: Angular position (joint set) object

4.2.12 Cartesian position (end-effector pose)

The Cartesian position object contains the current pose (position and orientation) of the
TRF with respect to the WRF (see Table 17). The first three subindexes correspond to the
x, y, and z coordinates, while the second three correspond to the α, β, γ Euler angles.

Index SI O. code Type Name Default Minimum Maximum Access PDO Units

6031h Array Cartesian position RO none
1 REAL n/a n/a n/a RO 1A03h.1 mm
2 REAL n/a n/a n/a RO 1A03h.2 mm
3 REAL n/a n/a n/a RO 1A03h.3 mm
4 REAL n/a n/a n/a RO 1A03h.4 ◦

5 REAL n/a n/a n/a RO 1A03h.5 ◦

6 REAL n/a n/a n/a RO 1A03h.6 ◦

Table 17: Cartesian position (end-effector pose) object

Page 40 of 42 Copyright c© 2018 by Mecademic Inc.

Programming Manual

4.2.13 Errors

The robot errors are returned in the Error TG object, which contains an unsigned integer
representing an error code as follows:

0 No error.

1 Illegal command received when robot not activated.

2 Activate command received when robot already activated.

3 Illegal command received while robot not homed.

4 Home command received when robot already homed.

5 Argument error.

6 Motion error.

8 Command unrecognized.

9 Singularity.

11 Close to singularity.

12 Out of workspace.

14 A joint is out of range.

16 Fatal error, impossible to reset.

Index SI O. code Type Name Default Minimum Maximum Access PDO Units

A000h Variable UDINT Error TG 0h 0h FFFFFFFFh RO none

Table 18: Error TG object

4.3 PDO mapping

The process data objects (PDOs) provide the interface to the application objects. The PDOs
are used to transfer data via cyclic communications in real time. PDOs can be reception
PDOs (RxPDOs), which receive data from the EtherCAT master (the PLC or the industrial
PC), or transmission PDOs (TxPDOs), which send the current value from the slave (the
Meca500) to the EtherCAT master.

In the previous section, we listed the PDOs that are assigned to some of the objects.
Here, in Tables 19 and 20, we list all PDOs and recall the objects they are assigned to.

Copyright c© 2018 by Mecademic Inc. Page 41 of 42

Programming Manual

PDO Object Name Note

1600h 7200h Robot control see Table 6
1601h 7310h Motion control see Table 7
1602h 7305h Movement see Table 8
1603h 7340h WRF see Table 9
1604h 7350h TRF see Table 10
1605h 7360h Motion settings see Table 11
1606h 7500h Gripper see Table 13

Table 19: RxPDOs

PDO Object Name Note

1A00h 6010h Robot status see Table 14
1A01h 6015h Motion status see Table 15
1A02h 6030h Angular position see Table 16
1A03h 6031h Cartesian position see Table 17

Table 20: TxPDOs

Page 42 of 42 Copyright c© 2018 by Mecademic Inc.

Mecademic Inc.
1300 Saint-Patrick St
Montreal QC H3K 1A4
CANADA

	About this manual
	Basic theory and definitions
	Definitions and conventions
	Joint numbering
	Reference frames
	Joint angles
	Pose and Euler angles
	Joint set and robot position
	Units

	Key concepts
	Homing
	Blending
	Inverse kinematic configuration
	Workspace and singularities

	Communicating over TCP/IP
	Motion commands
	Delay(t)
	GripperOpen/GripperClose
	MoveJoints(1,2,3,4,5,6)
	MoveLin(x,y,z,, ,)
	MoveLinRelTRF(x, y, z, , ,)
	MoveLinRelWRF(x, y, z, , ,)
	MovePose(x,y,z,, ,)
	SetAutoConf(e)
	SetBlending(p)
	SetCartAcc(p)
	SetCartAngVel()
	SetCartLinVel(v)
	SetConf(c1,c3,c5)
	SetGripperForce(p)
	SetGripperVel(p)
	SetJointAcc(p)
	SetJointVel(p)
	SetTRF(x,y,z,, ,)
	SetWRF(x,y,z,, ,)

	Request commands
	ActivateRobot
	ActivateSim
	ClearMotion
	DeactivateRobot
	DeactivateSim
	BrakesOn/BrakesOff
	GetConf
	GetJoints
	GetPose
	GetStatusGripper
	GetStatusRobot
	Home
	PauseMotion
	ResetError
	ResumeMotion
	SetEOB(e)
	SetEOM(e)
	SetOfflineProgramLoop(e)
	StartProgram(n)
	StartSaving(n)
	StopSaving
	SwitchToEtherCAT

	Responses
	Command error messages
	Command responses and pose and joint set feedback
	Status messages

	Communicating over EtherCAT
	Overview
	Connection types
	ESI file
	Enabling EtherCAT
	LEDs
	Activating and homing the robot

	Object dictionary
	Switch mode
	Robot control
	Motion control
	Movement
	WRF
	TRF
	Motion settings
	MEGP 25 (gripper)
	Robot status
	Motion status
	Angular position (joint set)
	Cartesian position (end-effector pose)
	Errors

	PDO mapping

